Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins
نویسندگان
چکیده
Intrinsically disordered proteins (IDPs) are typically low in nonpolar/hydrophobic but relatively high in polar, charged, and aromatic amino acid compositions. Some IDPs undergo liquid-liquid phase separation in the aqueous milieu of the living cell. The resulting phase with enhanced IDP concentration can function as a major component of membraneless organelles that, by creating their own IDP-rich microenvironments, stimulate critical biological functions. IDP phase behaviors are governed by their amino acid sequences. To make progress in understanding this sequence-phase relationship, we report further advances in a recently introduced application of random-phase-approximation (RPA) heteropolymer theory to account for sequence-specific electrostatics in IDP phase separation. Here we examine computed variations in phase behavior with respect to block length and charge density of model polyampholytes of alternating equal-length charge blocks to gain insight into trends observed in IDP phase separation. As a real-life example, the theory is applied to rationalize/predict binodal and spinodal phase behaviors of the 236-residue N-terminal disordered region of RNA helicase Ddx4 and its charge-scrambled mutant for which experimental data are available. Fundamental differences are noted between the phase diagrams predicted by RPA and those predicted by mean-field Flory-Huggins and Overbeek-Voorn/Debye-Hückel theories. In the RPA context, a physically plausible dependence of relative permittivity on protein concentration can produce a cooperative effect in favor of IDP-IDP attraction and thus a significant increased tendency to phase separate. Ramifications of these findings for future development of IDP phase separation theory are discussed.
منابع مشابه
Sequence-Specific Polyampholyte Phase Separation in Membraneless Organelles.
Liquid-liquid phase separation of charge- and/or aromatic-enriched intrinsically disordered proteins (IDPs) is critical in the biological function of membraneless organelles. Much of the physics of this recent discovery remains to be elucidated. Here, we present a theory in the random phase approximation to account for electrostatic effects in polyampholyte phase separations, yielding predictio...
متن کاملPhase Separation and Single-Chain Compactness of Charged Disordered Proteins Are Strongly Correlated.
Liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is a major undergirding factor in the regulated formation of membraneless organelles in the cell. The phase behavior of an IDP is sensitive to its amino acid sequence. Here we apply a recent random-phase-approximation polymer theory to investigate how the tendency for multiple chains of a protein to phase-separate, as ch...
متن کاملCharge pattern matching as a ‘fuzzy’ mode of molecular recognition for the functional phase separations of intrinsically disordered proteins
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approxim...
متن کاملA Lattice Model of Charge-Pattern-Dependent Polyampholyte Phase Separation.
In view of recent intense experimental and theoretical interests in the biophysics of liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs), heteropolymer models with chain molecules configured as self-avoiding walks on the simple cubic lattice are constructed to study how phase behaviors depend on the sequence of monomers along the chains. To address pertinent gener...
متن کاملSequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein.
Liquid-liquid phase separation, driven by collective interactions among multivalent and intrinsically disordered proteins, is thought to mediate the formation of membrane-less organelles in cells. Using parallel cellular and in vitro assays, we show that the Nephrin intracellular domain (NICD), a disordered protein, drives intracellular phase separation via complex coacervation, whereby the neg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016